Thursday, 4 October 2012

Lungs Cancer, Lungs Tumor, Causes of Lungs cancer

What is lung cancer?

Cancer of the lung, like all cancers, results from an abnormality in the body's basic unit of life, the cell. Normally, the body maintains a system of checks and balances on cell growth so that cells divide to produce new cells only when new cells are needed. Disruption of this system of checks and balances on cell growth results in an uncontrolled division and proliferation of cells that eventually forms a mass known as a tumor.
Tumors can be benign or malignant; when we speak of "cancer," we are referring to those tumors that are malignant. Benign tumors usually can be removed and do not spread to other parts of the body. Malignant tumors, on the other hand, grow aggressively and invade other tissues of the body, allowing entry of tumor cells into the bloodstream or lymphatic system and then to other sites in the body. This process of spread is termedmetastasis; the areas of tumor growth at these distant sites are calledmetastases. Since lung cancer tends to spread or metastasize very early after it forms, it is a very life-threatening cancer and one of the most difficult cancers to treat. While lung cancer can spread to any organ in the body, certain organs -- particularly the adrenal glands, liver, brain, andbone -- are the most common sites for lung cancer metastasis.
The lung also is a very common site for metastasis from tumors in other parts of the body. Tumor metastases are made up of the same type of cells as the original (primary) tumor. For example, ifprostate cancer spreads via the bloodstream to the lungs, it is metastatic prostate cancer in the lung and is not lung cancer.
The principal function of the lungs is to exchange gases between the air we breathe and the blood. Through the lung, carbon dioxide is removed from the bloodstream and oxygen from inspired air enters the bloodstream. The right lung has three lobes, while the left lung is divided into two lobes and a small structure called the lingula that is the equivalent of the middle lobe on the right. The major airways entering the lungs are the bronchi, which arise from the trachea. The bronchi branch into progressively smaller airways called bronchioles that end in tiny sacs known as alveoli where gas exchange occurs. The lungs and chest wall are covered with a thin layer of tissue called the pleura.
Lung cancer picture
Picture of lung cancer
Lung cancers can arise in any part of the lung, but 90%-95% of cancers of the lung are thought to arise from the epithelial cells, the cells lining the larger and smaller airways (bronchi and bronchioles); for this reason, lung cancers are sometimes called bronchogenic cancers or bronchogenic carcinomas. (Carcinoma is another term for cancer.) Cancers also can arise from the pleura (called mesotheliomas) or rarely from supporting tissues within the lungs, for example, the blood vessels.

What causes lung cancer?

The incidence of lung cancer is strongly correlated with cigarette smoking, with about 90% of lung cancers arising as a result of tobacco use. The risk of lung cancer increases with the number of cigarettes smoked and the time over which smoking has occurred; doctors refer to this risk in terms of pack-years of smoking history (the number of packs of cigarettes smoked per day multiplied by the number of years smoked). For example, a person who has smoked two packs of cigarettes per day for 10 years has a 20 pack-year smoking history. While the risk of lung cancer is increased with even a 10-pack-year smoking history, those with 30-pack-year histories or more are considered to have the greatest risk for the development of lung cancer. Among those who smoke two or more packs of cigarettes per day, one in seven will die of lung cancer.
Pipe and cigar smoking also can cause lung cancer, although the risk is not as high as with cigarette smoking. Thus, while someone who smokes one pack of cigarettes per day has a risk for the development of lung cancer that is 25 times higher than a nonsmoker, pipe and cigar smokers have a risk of lung cancer that is about five times that of a nonsmoker.
Tobacco smoke contains over 4,000 chemical compounds, many of which have been shown to be cancer-causing or carcinogenic. The two primary carcinogens in tobacco smoke are chemicals known as nitrosamines and polycyclic aromatic hydrocarbons. The risk of developing lung cancer decreases each year following smoking cessation as normal cells grow and replace damaged cells in the lung. In former smokers, the risk of developing lung cancer begins to approach that of a nonsmoker about 15 years after cessation of smoking.
Passive smoking
Passive smoking or the inhalation of tobacco smoke by nonsmokers who share living or working quarters with smokers, also is an established risk factor for the development of lung cancer. Research has shown that nonsmokers who reside with a smoker have a 24% increase in risk for developing lung cancer when compared with nonsmokers who do not reside with a smoker. An estimated 3,000 lung cancer deaths that occur each year in the U.S. are attributable to passive smoking.
Asbestos fibers
Asbestos fibers are silicate fibers that can persist for a lifetime in lung tissue following exposure to asbestos. The workplace is a common source of exposure to asbestos fibers, as asbestos was widely used in the past as both thermal and acoustic insulation. Today, asbestos use is limited or banned in many countries, including the U.S. Both lung cancer and mesothelioma (cancer of the pleura of the lung as well as of the lining of the abdominal cavity called the peritoneum) are associated with exposure to asbestos. Cigarette smoking drastically increases the chance of developing an asbestos-related lung cancer in workers exposed to asbestos. Asbestos workers who do not smoke have a fivefold greater risk of developing lung cancer than nonsmokers, but asbestos workers who smoke have a risk that is fifty- to ninetyfold greater than nonsmokers.
Radon gas
Radon gas is a natural, chemically inert gas that is a natural decay product of uranium. Uranium decays to form products, including radon, that emit a type of ionizing radiation. Radon gas is a known cause of lung cancer, with an estimated 12% of lung-cancer deaths attributable to radon gas, or about 20,000 lung-cancer-related deaths annually in the U.S., making radon the second leading cause of lung cancer in the U.S. As with asbestos exposure, concomitant smoking greatly increases the risk of lung cancer with radon exposure. Radon gas can travel up through soil and enter homes through gaps in the foundation, pipes, drains, or other openings. The U.S. Environmental Protection Agency estimates that one out of every 15 homes in the U.S. contains dangerous levels of radon gas. Radon gas is invisible and odorless, but it can be detected with simple test kits.
Familial predisposition
While the majority of lung cancers are associated with tobacco smoking, the fact that not all smokers eventually develop lung cancer suggests that other factors, such as individual genetic susceptibility, may play a role in the causation of lung cancer. Numerous studies have shown that lung cancer is more likely to occur in both smoking and nonsmoking relatives of those who have had lung cancer than in the general population. Recently, the largest genetic study of lung cancer ever conducted, involving over 10,000 people from 18 countries and led by the International Agency for Research on Cancer (IARC), identified a small region in the genome (DNA) that contains genes that appear to confer an increased susceptibility to lung cancer in smokers. The specific genes, located the q arm of chromosome 15, code for proteins that interact with nicotine and other tobacco toxins (nicotinic acetylcholine receptor genes).
Lung diseases
The presence of certain diseases of the lung, notably chronic obstructive pulmonary disease (COPD), is associated with an increased risk (four- to sixfold the risk of a nonsmoker) for the development of lung cancer even after the effects of concomitant cigarette smoking are excluded.
Prior history of lung cancer
Survivors of lung cancer have a greater risk of developing a second lung cancer than the general population has of developing a first lung cancer. Survivors of non-small cell lung cancers (NSCLCs, see below) have an additive risk of 1%-2% per year for developing a second lung cancer. In survivors of small cell lung cancers (SCLCs, see below), the risk for development of second lung cancers approaches 6% per year.
Air pollution
Air pollution from vehicles, industry, and power plants can raise the likelihood of developing lung cancer in exposed individuals. Up to 1% of lung cancer deaths are attributable to breathing polluted air, and experts believe that prolonged exposure to highly polluted air can carry a risk for the development of lung cancer similar to that of passive smoking.

No comments:

Post a Comment